Smooth spaces of actions on the line Joint with Joaquín Brum and Nicolás Matte Bon

Martín Gilabert Vio (Institut Camille Jordan)

December 9th, 2025

Notation

G a countable group.

Let $G \curvearrowright^{\varphi} \mathbb{R}$ by orientation-preserving homeomorphisms, assumed to be irreducible (i.e. no global fixed points).

Let $G \curvearrowright^{\varphi} \mathbb{R}$ by orientation-preserving homeomorphisms, assumed to be *irreducible* (i.e. no global fixed points).

Motivation: a countable group has a faithful irreducible action on \mathbb{R} iff it admits a total order invariant under left multiplication.

Let $G \curvearrowright^{\varphi} \mathbb{R}$ by orientation-preserving homeomorphisms, assumed to be *irreducible* (i.e. no global fixed points).

Motivation: a countable group has a faithful irreducible action on \mathbb{R} iff it admits a total order invariant under left multiplication.

Examples: free groups, surface groups, torsion-free nilpotent groups, wreath products.

Let $G \curvearrowright^{\varphi} \mathbb{R}$ by orientation-preserving homeomorphisms, assumed to be *irreducible* (i.e. no global fixed points).

Motivation: a countable group has a faithful irreducible action on \mathbb{R} iff it admits a total order invariant under left multiplication.

Examples: free groups, surface groups, torsion-free nilpotent groups, wreath products.

Non-examples: torsion groups, $SL_3(\mathbb{Z})$.

Question: how many different minimal actions on the line does G have, up to conjugacy? Classification?

Question: how many different minimal actions on the line does G have, up to conjugacy? Classification?

Example: BS(2,1) = $\langle g, t \mid gtg^{-1} = t^2 \rangle \cong \mathbb{Z}[1/2] \rtimes \mathbb{Z}$ acts faithfully by $g: x \mapsto 2x, t: x \mapsto x+1$.

Question: how many different minimal actions on the line does G have, up to conjugacy? Classification?

Example: BS(2,1) = $\langle g, t \mid gtg^{-1} = t^2 \rangle \cong \mathbb{Z}[1/2] \rtimes \mathbb{Z}$ acts faithfully by $g: x \mapsto 2x, t: x \mapsto x+1$.

Example: $\mathbb{Z}^2 = \langle a, b \rangle$ acts faithfully by $a: x \mapsto x + \alpha$, $b: x \mapsto x + \beta$ where α, β are rationally independent and $\alpha^2 + \beta^2 = 1$.

Question: how many different minimal actions on the line does G have, up to conjugacy? Classification?

Example: BS(2,1) = $\langle g, t \mid gtg^{-1} = t^2 \rangle \cong \mathbb{Z}[1/2] \rtimes \mathbb{Z}$ acts faithfully by $g: x \mapsto 2x, t: x \mapsto x+1$.

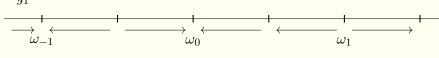
Example: $\mathbb{Z}^2 = \langle a, b \rangle$ acts faithfully by $a: x \mapsto x + \alpha$, $b: x \mapsto x + \beta$ where α, β are rationally independent and $\alpha^2 + \beta^2 = 1$.

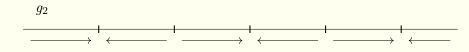
Proposition (Hölder, Rivas)

Up to conjugacy by $\operatorname{Homeo}(\mathbb{R})$, these are the only minimal actions of \mathbb{Z}^2 and of $\operatorname{BS}(2,1)$ on \mathbb{R} .

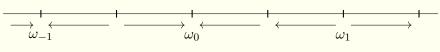
Fix $\omega \in \{\pm 1\}^{\mathbb{Z}}$. Suppose for instance $\omega_{-1} = +, \omega_0 = +, \omega_1 = -$.

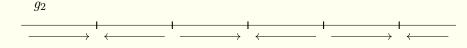
Fix $\omega \in \{\pm 1\}^{\mathbb{Z}}$. Suppose for instance $\omega_{-1} = +$, $\omega_0 = +$, $\omega_1 = -$. Define a minimal action φ_{ω} of $G = F_2$ by g_1





Fix $\omega \in \{\pm 1\}^{\mathbb{Z}}$. Suppose for instance $\omega_{-1} = +$, $\omega_0 = +$, $\omega_1 = -$. Define a minimal action φ_{ω} of $G = F_2$ by g_1





Then φ_{ω} and $\varphi_{\omega'}$ are conjugate iff ω, ω' are equal up to a power of a shift.

Question, bis: what is the Borel complexity of conjugacy in $\text{Rep}_{\min}(G) := \{\text{minimal actions}\}$? Is the relation even Borel?

X standard Borel space, $E\subseteq X\times X$ Borel equivalence relation.

X standard Borel space, $E \subseteq X \times X$ Borel equivalence relation.

Example: if H is a locally compact Polish group acting on X, then $E_{H \cap X} = \{(x, h.x) \mid x \in X, h \in H\}$ is Borel.

Definitions

Let E, F Borel equivalence relations on X, Y respectively.

Definitions

Let E, F Borel equivalence relations on X, Y respectively.

E is Borel reducible to F (written $E \leq_B F$) if there is $f: X \to Y$ Borel s.t. xEx' iff f(x)Ff(x') for all $x, x' \in X$.

Definitions

Let E, F Borel equivalence relations on X, Y respectively.

E is Borel reducible to F (written $E \leq_B F$) if there is $f: X \to Y$ Borel s.t. xEx' iff f(x)Ff(x') for all $x, x' \in X$. Write $E \sim_B F$

if $E \leq_B F \leq_B E$.

Definitions

Let E, F Borel equivalence relations on X, Y respectively.

E is Borel reducible to F (written $E \leq_B F$) if there is $f: X \to Y$ Borel s.t. xEx' iff f(x)Ff(x') for all $x, x' \in X$. Write $E \sim_B F$ if $E <_B F <_B E$.

E is smooth if $E \leq_B \{(z, z) \mid z \in Z\}$ for some standard Borel space Z.

Definitions

Let E, F Borel equivalence relations on X, Y respectively.

E is Borel reducible to F (written $E \leq_B F$) if there is $f: X \to Y$ Borel s.t. xEx' iff f(x)Ff(x') for all $x, x' \in X$. Write $E \sim_B F$ if $E <_B F <_B E$.

E is smooth if $E \leq_B \{(z,z) \mid z \in Z\}$ for some standard Borel space Z.

E is essentially hyperfinite if $E \sim_B G$ where $G = \nearrow \bigcup_{n \geq 0} G_n$ and each G_n -class is finite.

Proposition (Brum-Matte Bon-Rivas-Triestino, after Deroin-Navas-Kleptsyn-Parwani)

If G is finitely generated then $E_{\mathrm{Homeo}(\mathbb{R}) \cap \mathrm{Rep}_{\min}(G)}$ is essentially hyperfinite.

It is not smooth for $G = F_2$.

Proposition (Brum-Matte Bon-Rivas-Triestino, after Deroin-Navas-Kleptsyn-Parwani)

If G is finitely generated then $E_{\text{Homeo}(\mathbb{R}) \cap \text{Rep}_{\min}(G)}$ is essentially hyperfinite.

It is not smooth for $G = F_2$.

Proposition (Brum-G.-Matte Bon)

 $E_{\operatorname{Homeo}(\mathbb{R}) \cap \operatorname{Rep}_{\min}(G)}$ is always essentially countable.

Let $\mathcal C$ be the class of countable groups such that $E_{\operatorname{Homeo}(\mathbb R) \curvearrowright \operatorname{Rep}_{\min}(G)}$ is smooth.

Question: describe \mathcal{C} .

Let \mathcal{C} be the class of countable groups such that $E_{\operatorname{Homeo}(\mathbb{R}) \curvearrowright \operatorname{Rep}_{\min}(G)}$ is smooth.

Question: describe C.

Theorem (Ghys, Matsumoto)

There are explicit invariants for conjugacy among minimal actions on the circle. In particular this relation is always smooth.

Let \mathcal{C} be the class of countable groups such that $E_{\operatorname{Homeo}(\mathbb{R}) \curvearrowright \operatorname{Rep}_{\min}(G)}$ is smooth.

Question: describe C.

Theorem (Ghys, Matsumoto)

There are explicit invariants for conjugacy among minimal actions on the circle. In particular this relation is always smooth.

 \mathcal{C} contains countable abelian groups and f.g. groups of sub-exponential growth (Hölder, Plante).

Let \mathcal{C} be the class of countable groups such that $E_{\operatorname{Homeo}(\mathbb{R}) \curvearrowright \operatorname{Rep}_{\min}(G)}$ is smooth.

Question: describe C.

Theorem (Ghys, Matsumoto)

There are explicit invariants for conjugacy among minimal actions on the circle. In particular this relation is always smooth.

 \mathcal{C} contains countable abelian groups and f.g. groups of sub-exponential growth (Hölder, Plante). Question: does it contain all f.g. (elementary) amenable groups?

Theorem A (B-G-MB)

If G is f.g. and contains a normal subgroup $N \in \mathcal{C}$ such that $G/N \in \mathcal{C}$, then $G \in \mathcal{C}$.

Theorem A (B-G-MB)

If G is f.g. and contains a normal subgroup $N \in \mathcal{C}$ such that $G/N \in \mathcal{C}$, then $G \in \mathcal{C}$.

If $G \in \mathcal{C}$ is f.g. and $\varphi \colon H \to K$ is an isomorphism of finite-index subgroups, then the HNN extension G^{φ} is in \mathcal{C} .

Theorem A (B-G-MB)

If G is f.g. and contains a normal subgroup $N \in \mathcal{C}$ such that $G/N \in \mathcal{C}$, then $G \in \mathcal{C}$.

If $G \in \mathcal{C}$ is f.g. and $\varphi \colon H \to K$ is an isomorphism of finite-index subgroups, then the HNN extension G^{φ} is in \mathcal{C} .

If $H, K \in \mathcal{C}$ are f.g. sharing a finite-index subgroup G, then $H *_G K \in \mathcal{C}$.

Theorem A (B-G-MB)

If G is f.g. and contains a normal subgroup $N \in \mathcal{C}$ such that $G/N \in \mathcal{C}$, then $G \in \mathcal{C}$.

If $G \in \mathcal{C}$ is f.g. and $\varphi \colon H \to K$ is an isomorphism of finite-index subgroups, then the HNN extension G^{φ} is in \mathcal{C} .

If $H, K \in \mathcal{C}$ are f.g. sharing a finite-index subgroup G, then $H *_G K \in \mathcal{C}$.

If $G_n \in \mathcal{C}$, $n \in \mathbb{N}$ are f.g., then $\bigoplus_{n \in \mathbb{N}} G_n \in \mathcal{C}$.

Corollary

 ${\cal C}$ contains

Corollary

 \mathcal{C} contains

the Baumslag-Solitar groups BS $(m, n) = \langle g, t \mid gt^ng^{-1} = t^m \rangle$, for $n, m \in \mathbb{Z} \setminus \{0\}$,

Corollary

\mathcal{C} contains

the Baumslag-Solitar groups BS $(m, n) = \langle g, t \mid gt^ng^{-1} = t^m \rangle$, for $n, m \in \mathbb{Z} \setminus \{0\}$,

all f.g. solvable groups,

Corollary

\mathcal{C} contains

the Baumslag-Solitar groups $BS(m, n) = \langle g, t \mid gt^ng^{-1} = t^m \rangle$, for $n, m \in \mathbb{Z} \setminus \{0\}$,

all f.g. solvable groups, and

the wreath product $H \wr G$ where $G, H \in \mathcal{C}$ are f.g.

Theorem B (B-G-MB)

 $\mathcal C$ contains all finitely generated groups of piecewise affine homeomorphisms of $\mathbb R.$

Theorem B (B-G-MB)

 $\mathcal C$ contains all finitely generated groups of piecewise affine homeomorphisms of $\mathbb R.$

$$PAff_{+}(\mathbb{R}) = \{ g \in Homeo_{0}(\mathbb{R}) \mid \text{there is a finite } \mathcal{B} \subset \mathbb{R} \text{ s.t.}$$

$$g \text{ is affine on each c.c. of } \mathbb{R} \setminus \mathcal{B} \}$$

Theorem B (B-G-MB)

 $\mathcal C$ contains all finitely generated groups of piecewise affine homeomorphisms of $\mathbb R.$

$$PAff_{+}(\mathbb{R}) = \{ g \in Homeo_{0}(\mathbb{R}) \mid \text{there is a finite } \mathcal{B} \subset \mathbb{R} \text{ s.t.}$$
 $g \text{ is affine on each c.c. of } \mathbb{R} \setminus \mathcal{B} \}$

Warning: not all actions of $G \leq PAff_{+}(\mathbb{R})$ on \mathbb{R} are by piecewise affine homeomorphisms.

Question, bis: are all f.g. amenable groups in $\mathcal{C}?$

Question, bis: are all f.g. amenable groups in \mathcal{C} ?

Proposition

There is an explicit finitely generated group $G \notin \mathcal{C}$, such that G is amenable iff Thompson's group F is amenable.

Question, bis: are all f.g. amenable groups in \mathcal{C} ?

Proposition

There is an explicit finitely generated group $G \notin \mathcal{C}$, such that G is amenable iff Thompson's group F is amenable.

Here, F = piecewise affine dyadic homeomorphisms of [0, 1]

Question, bis: are all f.g. amenable groups in \mathcal{C} ?

Proposition

There is an explicit finitely generated group $G \notin \mathcal{C}$, such that G is amenable iff Thompson's group F is amenable.

Here, F = piecewise affine dyadic homeomorphisms of [0,1] $(g \in F \text{ if it is piecewise affine, locally of the form } x \mapsto 2^k x + b$ where $k \in \mathbb{Z}, b \in \mathbb{Z}[1/2]$.

Definitions

Let $\varphi \in \operatorname{Rep}_{\min}(G)$.

 $x, y \in \mathbb{R}$ are proximal for φ if there is $(g_n)_{n \geq 0} \subseteq G$ s.t. $\varphi(g_n).x, \varphi(g_n).y$ converge to the same point.

Definitions

Let $\varphi \in \operatorname{Rep}_{\min}(G)$.

 $x, y \in \mathbb{R}$ are proximal for φ if there is $(g_n)_{n \geq 0} \subseteq G$ s.t. $\varphi(g_n).x, \varphi(g_n).y$ converge to the same point.

 φ is proximal if every pair of points is proximal for φ .

Definitions

Let $\varphi \in \operatorname{Rep}_{\min}(G)$.

 $x, y \in \mathbb{R}$ are proximal for φ if there is $(g_n)_{n \geq 0} \subseteq G$ s.t.

 $\varphi(g_n).x, \varphi(g_n).y$ converge to the same point.

 φ is *proximal* if every pair of points is proximal for φ .

 φ is *locally proximal* if every point is contained in an open interval whose endpoints are proximal for φ .

Fact

Let $\varphi \in \operatorname{Rep}_{\min}(G)$. Then either

Fact

Let $\varphi \in \operatorname{Rep}_{\min}(G)$. Then either

(I) φ is conjugated to an action by translations,

Fact

Let $\varphi \in \operatorname{Rep}_{\min}(G)$. Then either

(I) φ is conjugated to an action by translations,

(II) φ is locally proximal and not proximal,

Fact

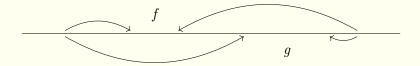
Let $\varphi \in \text{Rep}_{\min}(G)$. Then either

- (I) φ is conjugated to an action by translations,
- (II) φ is locally proximal and not proximal, or

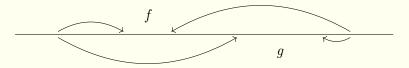
(III) φ is proximal.

If φ is of type (III) then G contains a non-abelian free subsemigroup.

If φ is of type (III) then G contains a non-abelian free subsemigroup.

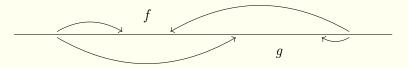


If φ is of type (III) then G contains a non-abelian free subsemigroup.



If φ is of type (II), then φ commutes with $f \in \text{Homeo}(\mathbb{R})$ with no fixed points such that the action on $\mathbb{R}/\{x \sim f(x)\} = S^1$ is proximal.

If φ is of type (III) then G contains a non-abelian free subsemigroup.



If φ is of type (II), then φ commutes with $f \in \text{Homeo}(\mathbb{R})$ with no fixed points such that the action on $\mathbb{R}/\{x \sim f(x)\} = S^1$ is proximal. Thus G contains non-abelian free groups.

Proposition

 $G \in \mathcal{C}$ iff for every minimal φ of type III and $(f_n)_{n\geq 0} \subset \operatorname{Homeo}_0(\mathbb{R})$ such that $\lim_n f_n \cdot \varphi = \varphi$, we have $\lim_n f_n = \operatorname{id}_{\mathbb{R}}$

Proposition

 $G \in \mathcal{C}$ iff for every minimal φ of type III and $(f_n)_{n\geq 0} \subset \operatorname{Homeo}_0(\mathbb{R})$ such that $\lim_n f_n.\varphi = \varphi$, we have $\lim_n f_n = \operatorname{id}_{\mathbb{R}}$ (iff the map $f \in \operatorname{Homeo}_0(\mathbb{R}) \mapsto f.\varphi \in \operatorname{Orb}(\varphi)$ is a homeomorphism).

Proposition

 $G \in \mathcal{C}$ iff for every minimal φ of type III and $(f_n)_{n \geq 0} \subset \operatorname{Homeo}_0(\mathbb{R})$ such that $\lim_n f_n \cdot \varphi = \varphi$, we have $\lim_n f_n = \operatorname{id}_{\mathbb{R}}$ (iff the map $f \in \operatorname{Homeo}_0(\mathbb{R}) \mapsto f \cdot \varphi \in \operatorname{Orb}(\varphi)$ is a homeomorphism).

In particular the orbit equivalence relation on actions of type I or II is always smooth.

A minimal subset $\Lambda \subseteq \mathbb{R}$ for φ is a closed φ -invariant subset where the action is minimal.

A minimal subset $\Lambda \subseteq \mathbb{R}$ for φ is a closed φ -invariant subset where the action is minimal.

Fact

Let φ an irreducible action. Then either the action is minimal,

A minimal subset $\Lambda \subseteq \mathbb{R}$ for φ is a closed φ -invariant subset where the action is minimal.

Fact

Let φ an irreducible action. Then either

the action is minimal,

there is a unique minimal subset $\Lambda \subsetneq \mathbb{R}$ which is perfect and totally disconnected,

A minimal subset $\Lambda \subseteq \mathbb{R}$ for φ is a closed φ -invariant subset where the action is minimal.

Fact

Let φ an irreducible action. Then either

the action is minimal,

there is a unique minimal subset $\Lambda \subsetneq \mathbb{R}$ which is perfect and totally disconnected,

there is a discrete orbit,

A minimal subset $\Lambda \subseteq \mathbb{R}$ for φ is a closed φ -invariant subset where the action is minimal.

Fact

Let φ an irreducible action. Then either

the action is minimal,

there is a unique minimal subset $\Lambda \subsetneq \mathbb{R}$ which is perfect and totally disconnected,

there is a discrete orbit, or

there is no minimal subset.

Theorem

If G is f.g. and $N \leq G$ is normal with $N \in \mathcal{C}$ and $G/N \in \mathcal{C},$ then $G \in \mathcal{C}.$

Theorem

If G is f.g. and $N \leq G$ is normal with $N \in \mathcal{C}$ and $G/N \in \mathcal{C}$, then $G \in \mathcal{C}$.

Argument sample: take a minimal φ of type III and $(f_n)_{n\geq 0} \subset \operatorname{Homeo}_0(\mathbb{R})$ such that $\lim_n f_n \cdot \varphi = \varphi$. We want $\lim_n f_n = \operatorname{id}_{\mathbb{R}}$.

Theorem

If G is f.g. and $N \leq G$ is normal with $N \in \mathcal{C}$ and $G/N \in \mathcal{C}$, then $G \in \mathcal{C}$.

Argument sample: take a minimal φ of type III and $(f_n)_{n\geq 0}\subset \operatorname{Homeo}_0(\mathbb{R})$ such that $\lim_n f_n.\varphi=\varphi$. We want $\lim_n f_n=\operatorname{id}_{\mathbb{R}}$.

If $\varphi|_N$ has a global fixed point, it is trivial and we reduce the problem to a quotient of G. WMA $\varphi|_N$ irreducible.

Theorem

If G is f.g. and $N \leq G$ is normal with $N \in \mathcal{C}$ and $G/N \in \mathcal{C}$, then $G \in \mathcal{C}$.

Argument sample: take a minimal φ of type III and $(f_n)_{n\geq 0}\subset \operatorname{Homeo}_0(\mathbb{R})$ such that $\lim_n f_n.\varphi=\varphi$. We want $\lim_n f_n=\operatorname{id}_{\mathbb{R}}$.

If $\varphi|_N$ has a global fixed point, it is trivial and we reduce the problem to a quotient of G. WMA $\varphi|_N$ irreducible.

If $\varphi|_N$ is of type III then $\lim_n f_n = \mathrm{id}_{\mathbb{R}}$.

What if $\varphi|_N$ has no minimal set?

What if $\varphi|_N$ has no minimal set?

Then φ is laminar, that is, it preserves a collection of open bounded intervals $\mathcal L$ such that

What if $\varphi|_N$ has no minimal set?

Then φ is laminar, that is, it preserves a collection of open bounded intervals $\mathcal L$ such that

if $I, J \in \mathcal{L}$ and $I \cap J \neq \emptyset$ then $I \subseteq J$ or $J \subseteq I$,

What if $\varphi|_N$ has no minimal set?

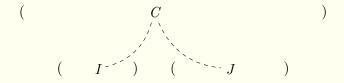
Then φ is laminar, that is, it preserves a collection of open bounded intervals \mathcal{L} such that

if $I, J \in \mathcal{L}$ and $I \cap J \neq \emptyset$ then $I \subseteq J$ or $J \subseteq I$, and for every compact $K \subset \mathbb{R}$ there is $I \in \mathcal{L}$ with $K \subset I$.

What if $\varphi|_N$ has no minimal set?

Then φ is laminar, that is, it preserves a collection of open bounded intervals \mathcal{L} such that

if $I, J \in \mathcal{L}$ and $I \cap J \neq \emptyset$ then $I \subseteq J$ or $J \subseteq I$, and for every compact $K \subset \mathbb{R}$ there is $I \in \mathcal{L}$ with $K \subset I$.



Even more context

Denote by $\mathbb{R} \curvearrowright^{\Psi} \operatorname{Rep}_{\min}(G)$ the translation flow conjugating actions by translations: $\Psi_{t} \cdot \varphi = T_{t} \circ \varphi \circ T_{-t}$ for $t \in \mathbb{R}$.

Even more context

Denote by $\mathbb{R} \curvearrowright^{\Psi} \operatorname{Rep}_{\min}(G)$ the translation flow conjugating actions by translations: $\Psi_{t} \cdot \varphi = T_{t} \circ \varphi \circ T_{-t}$ for $t \in \mathbb{R}$.

Assume G finitely generated.

Denote by $\mathbb{R} \curvearrowright^{\Psi} \operatorname{Rep}_{\min}(G)$ the translation flow conjugating actions by translations: $\Psi_{t} \cdot \varphi = T_{t} \circ \varphi \circ T_{-t}$ for $t \in \mathbb{R}$.

Assume G finitely generated.

Theorem (Deroin-Kleptsyn-Navas-Parwani)

There is a canonical compact space Harm(G) composed of minimal and cyclic actions s.t.

Denote by $\mathbb{R} \curvearrowright^{\Psi} \operatorname{Rep}_{\min}(G)$ the translation flow conjugating actions by translations: $\Psi_{t} \cdot \varphi = T_{t} \circ \varphi \circ T_{-t}$ for $t \in \mathbb{R}$.

Assume G finitely generated.

Theorem (Deroin-Kleptsyn-Navas-Parwani)

There is a canonical compact space Harm(G) composed of minimal and cyclic actions s.t.

every $\varphi \in \operatorname{Rep}_{\min}(G)$ is pointed conjugate to a unique $r(\varphi) \in \operatorname{Harm}(G)$,

Denote by $\mathbb{R} \curvearrowright^{\Psi} \operatorname{Rep}_{\min}(G)$ the translation flow conjugating actions by translations: $\Psi_{t} \cdot \varphi = T_{t} \circ \varphi \circ T_{-t}$ for $t \in \mathbb{R}$.

Assume G finitely generated.

Theorem (Deroin-Kleptsyn-Navas-Parwani)

There is a canonical compact space Harm(G) composed of minimal and cyclic actions s.t.

every $\varphi \in \text{Rep}_{\min}(G)$ is pointed conjugate to a unique $r(\varphi) \in \text{Harm}(G)$,

 $\operatorname{Harm}(G)$ is Ψ -invariant.

Denote by $\mathbb{R} \curvearrowright^{\Psi} \operatorname{Rep}_{\min}(G)$ the translation flow conjugating actions by translations: $\Psi_{t} \cdot \varphi = T_{t} \circ \varphi \circ T_{-t}$ for $t \in \mathbb{R}$.

Assume G finitely generated.

Theorem (Deroin-Kleptsyn-Navas-Parwani)

There is a canonical compact space $\operatorname{Harm}(G)$ composed of minimal and cyclic actions s.t.

every $\varphi \in \text{Rep}_{\min}(G)$ is pointed conjugate to a unique $r(\varphi) \in \text{Harm}(G)$,

Harm(G) is Ψ -invariant.

Here, two actions are *pointed conjugate* if they are conjugate via a homeo fixing 0.

In a coordinate-free way: there is a compact metrizable X equipped with an \mathbb{R} -flow Ψ and a continuous G-action such that

In a coordinate-free way: there is a compact metrizable X equipped with an \mathbb{R} -flow Ψ and a continuous G-action such that G preserves the Ψ -orbits,

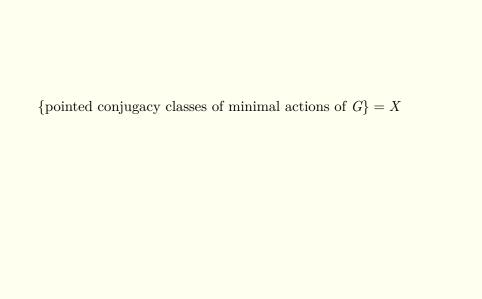
In a coordinate-free way: there is a compact metrizable X equipped with an \mathbb{R} -flow Ψ and a continuous G-action such that G preserves the Ψ -orbits,

every minimal action of G appears as an action on a unique Ψ -orbit.

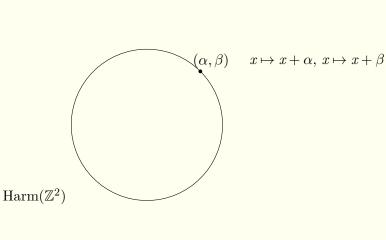
In a coordinate-free way: there is a compact metrizable X equipped with an \mathbb{R} -flow Ψ and a continuous G-action such that G preserves the Ψ -orbits,

every minimal action of G appears as an action on a unique Ψ -orbit.

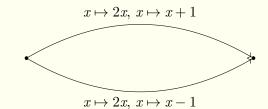
```
 \begin{aligned} & \{ \text{type II actions} \} \longleftrightarrow \{ \text{periodic } \Psi \text{-orbits} \} \\ & \{ \text{type I actions} \} \longleftrightarrow \{ \Psi \text{-fixed points} \} \\ & \{ \text{type III actions} \} \longleftrightarrow \{ \text{free } \Psi \text{-orbits} \} \end{aligned}
```



{pointed conjugacy classes of minimal actions of G} = X so {conjugacy classes of minimal actions of G} = X/Ψ



Harm(BS(2,1))



$\operatorname{Harm}(\mathrm{BS}(2,3))$

